Операционная система UNIX


Подходы к организации нитей и управлению ими в разных вариантах ОС UNIX


Хотя концептуально реализации механизма нитей в разных современных вариантах практически эквивалентны (да и что особенное можно придумать по поводу легковесных процессов?), технически и, к сожалению, в отношении интерфейсов эти реализации различаются. Мы не ставим здесь перед собой цели описать в деталях какую-либо реализацию, однако постараемся в общих чертах охарактеризовать разные подходы.

Начнем с того, что разнообразие механизмов нитей в современных вариантах ОС UNIX само по себе представляет проблему. Сейчас достаточно трудно говорить о возможности мобильного параллельного программирования в среде UNIX-ориентированных операционных систем. Если программист хочет добиться предельной эффективности (а он должен этого хотеть, если для целей его проекта приобретен дорогостоящий мультипроцессор), то он вынужден использовать все уникальные возможности используемой им операционной системы.

Для всех очевидно, что сегодняшняя ситуация далека от идеальной. Однако, по-видимому, ее было невозможно избежать, поскольку поставщики мультипроцессорных симметричных архитектур должны были как можно раньше предоставить своим покупателям возможности эффективного программирования, и времени на согласование решений просто не было (любых поставщиков прежде всего интересует объем продаж, а проблемы будущего оставляются на будущее).

Применяемые в настоящее время подходы зависят от того, насколько внимательно разработчики ОС относились к проблемам реального времени. (Возвращаясь к введению этого раздела, еще раз отметим, что здесь мы имеем в виду "мягкое" реальное время, т.е. программно-аппаратные системы, которые обеспечивают быструю реакцию на внешние события, но время реакции не установлено абсолютно строго.) Типичная система реального времени состоит из общего монитора, который отслеживает общее состояние системы и реагирует на внешние и внутренние события, и совокупности обработчиков событий, которые, желательно параллельно, выполняют основные функции системы.

Понятно, что от возможностей реального распараллеливания функций обработчиков зависят общие временные показатели системы. Если, например, при проектировании системы замечено, что типичной картиной является "одновременное" поступление в систему N внешних событий, то желательно гарантировать наличие реальных N устройств обработки, на которых могут базироваться обработчики. На этих наблюдениях основан подход компании Sun Microsystems.


В системе Solaris (правильнее говорить SunOS 4.x, поскольку Solaris в терминологии Sun представляет собой не операционную систему, а расширенную операционную среду) принят следующий подход. При запуске любого процесса можно потребовать резервирования одного или нескольких процессоров мультипроцессорной системы. Это означает, что операционная система не предоставит никакому другому процессу возможности выполнения на зарезервированном(ых) процессоре(ах). Независимо от того, готова ли к выполнению хотя бы одна нить такого процесса, зарезервированные процессоры не будут использоваться ни для чего другого.

Далее, при образовании нити можно закрепить ее за одним или несколькими процессорами из числа зарезервированных. В частности, таким образом в принципе можно привязать нить к некоторому фиксированному процессору. В общем случае некоторая совокупность потоков управления привязывается к некоторой совокупности процессоров так, чтобы среднее время реакции системы реального времени удовлетворяло внешним критериям. Очевидно, что это "ассемблерный" стиль программирования (слишком много перекладывается на пользователя), но зато он открывает широкие возможности перед разработчиками систем реального времени (которые, правда, после этого зависят не только от особенностей конкретной операционной системы, но и от конкретной конфигурации данной компьютерной установки). Подход Solaris преследует цели удовлетворить разработчиков систем "мягкого" (а, возможно, и "жесткого") реального времени, и поэтому фактически дает им в руки средства распределения критических вычислительных ресурсов.

В других подходах в большей степени преследуется цель равномерной балансировки загрузки мультипроцессора. В этом случае программисту не предоставляются средства явной привязки процессоров к процессам или нитям. Система допускает явное распараллеливание в пределах общей виртуальной памяти и "обещает", что по мере возможностей все процессоры вычислительной системы будут загружены равномерно. Этот подход обеспечивает наиболее эффективное использование общих вычислительных ресурсов мультипроцессора, но не гарантирует корректность выполнения систем реального времени (если не считать возможности установления специальных приоритетов реального времени, которые упоминались в п. 3.1.2).



Отметим существование еще одной аппаратно-программной проблемы, связанной с нитями (и не только с ними). Проблема связана с тем, что в существующих симметричных мультипроцессорах обычно каждый процессор обладает собственной сверхбыстродействующей буферной памятью (кэшем). Идея кэша, в общих чертах, состоит в том, чтобы обеспечить процессору очень быстрый (без необходимости выхода на шину доступа к общей оперативной памяти) доступ к наиболее актуальным данным. В частности, если программа выполняет запись в память, то это действие не обязательно сразу отображается в соответствующем элементе основной памяти; до поры до времени измененный элемент данных может содержаться только в локальном кэше того процессора, на котором выполняется программа. Конечно, это противоречит идее совместного использования виртуальной памяти нитями одного процесса (а также идее использования памяти, разделяемой между несколькими процессами, см. п. 3.4.1).

Это очень сложная проблема, относящаяся к области проблем "когерентности кэшей". Теоретически имеется много подходов к ее решению (например, аппаратное распознавание необходимости выталкивания записи из кэша с синхронным объявлением недействительным содержания всех кэшей, включающих тот же элемент данных). Однако на практике такие сложные действия не применяются, и обычным приемом является отмена режима кэширования в том случае, когда на разных процессорах мультипроцессорной системы выполняются нити одного процесса или процессы, использующие разделяемую память.

После введения понятия нити трансформируется само понятие процесса. Теперь лучше (и правильнее) понимать процесс ОС UNIX как некоторый контекст, включающий виртуальную память и другие системные ресурсы (включая открытые файлы), в котором выполняется, по крайней мере, один поток управления (нить), обладающий своим собственным (более простым) контекстом. Теперь ядро знает о существовании этих двух уровней контекстов и способно сравнительно быстро изменять контекст нити (не изменяя общего контекста процесса) и так же, как и ранее, изменять контекст процесса.

Последнее замечание относится к синхронизации выполнения нитей одного процесса (точнее было бы говорить о синхронизации доступа нитей к общим ресурсам процесса - виртуальной памяти, открытым файлам и т.д.). Конечно, можно пользоваться (сравнительно) традиционными средствами синхронизации (например, семафорами, см. п. 3.4.2). Однако оказывается, что система может предоставить для синхронизации нитей одного процесса более дешевые средства (поскольку все нити работают в общем контексте процесса). Обычно эти средства относятся к классу средств взаимного исключения (т.е. к классу семафоро-подобных средств). К сожалению, и в этом отношении к настоящему времени отсутствует какая-либо стандартизация.


Содержание раздела